STEM and Politics - Before and After Tuesday, November 8, 2016

Engaging Math Co-PI to Co-Host October Webinar: STEM and Politics – Before and After Tuesday, November 8, 2016

Hosted by: Chris Arney, Janice Ballou, and Frank Wattenberg

Chris Arney and Frank Wattenberg are members of the Department of Mathematical Sciences at the United States Military Academy. The views expressed here do not necessarily reflect the views of the United States Military Academy, the United States Army, or the United States Government.

Webinar Date: Thursday, October 13, 2016
Webinar Time: 1-2pm (Eastern)

Register for the Webinar

Many of us in the United States and around the world are aghast at the tone of this year’s United States presidential election. We are struggling to understand how and why our politics have reached the point that all that we hold dear about our country is in jeopardy. As STEM educators we have an enormous opportunity and responsibility. Our courses can help the debate in several ways:

  • Many of the most controversial topics–for example, climate change–involve the STEM disciplines. We can help inform the debate. Perhaps it is not too late to bring reason to public discourse.
  • Framing public policy questions in scientific terms can often lower the temperature of the debate. Perhaps spreadsheets can replace name-calling.
  • Perhaps most importantly, as scientists we can also study elections and public policy debate themselves. How did we get in this mess? How can we get out of it?

This year’s election season has sparked considerable hand-wringing and even soul-searching by professional journalists. Many worry that the quest for objectivity has enforced a false equivalency in their reporting. As educators we face some of the same problems as we seek to respect the opinions of all our students. In addition, our problems are compounded by the fact that we give our students grades.

We will focus on scientific modeling of how voters evaluate different positions on issues, how they decide for whom to vote, how candidates appeal to voters, and on what we can learn from surveys and polling about ourselves and our politics. We recommend taking the Pew Research Center’s brief Political Typology Quiz before the webinar.

This webinar will be largely discussion based. The organizers will briefly introduce some of the ideas below, but will spend most of the time talking about how these ideas can transform our classrooms and help shape a better and more civil future.

We will also touch on some of the ways in which technology has impacted the workings of the body politic and, especially, the impact of big data. We recommend the book Weapons of Math Destruction by Cathy O’Neil. The short YouTube video below is a brief introduction, especially the last few minutes.

In addition we will discuss the role that language–ranging from the post below commenting on the book to the words of candidates–has had dividing our nation and poisoning our politics.

Math and Calories

As STEM educators we have contributed to the present situation. For example, the following problem is arguably the most pernicious of the many thousands of textbook calculus problems. (This particular version came from the web site but versions appear in virtually every calculus textbook.)

Calculus Dirt Farm Problem

The Next Generation Science Standards do somewhat better if they are understood and implemented well. Consider, for example, the highlighted words from the NGSS:

Grades 9-12

Engineering design at the high school level engages students in complex problems that include issues of social and global significance. Such problems need to be broken down into simpler problems to be tackled one at a time. Students are also expected to quantify criteria and constraints so that it will be possible to use quantitative methods to compare the potential of different solutions. While creativity in solving problems is valued, emphasis is on identifying the best solution to a problem, which often involves researching how others have solved it before. Students are expected to use mathematics and/or computer simulations to test solutions under different conditions, prioritize criteria, consider trade-offs, and assess social and environmental impacts.


Textbook problems have virtually no relationship to real problems–the problems voters and politicians must address. Textbook problems have textbook answers, whether the one best solution the textbook farmer seeks or the NGSS’s graphic showing a collection of solutions to individual problems, impossibly isolated from their context. There is no one best solution for most real problems. We will discuss how we can teach the topics we already teach with simple examples while emphasizing the complexity of real world settings–especially competing stakeholders and criteria and systems that are simply the sums of their parts.

Register for the Webinar

Photo credit: Phil Roeder

May Webinar "Evidence Matters: Using the Scholarship of Teaching and Learning to Tell the Story of Curriculum Development"

Engaging Math Partner to Co-Host Webinar on Using SoTL to Tell the Story of Curriculum Development

“Evidence Matters: Using the Scholarship of Teaching and Learning to Tell the Story of Curriculum Development”

The Scholarship of Teaching and Learning (SoTL) is a form of research that involves a systematic investigation of teaching practices and student learning followed by peer review and public sharing of the work for others to build upon. This webinar begins with an overview of the key aspects of SoTL, situating it within a spectrum of scholarly work on teaching and learning. Two in-depth case studies, one involving service learning and the other involving sustainability, illustrate how SoTL can contribute to the process of developing, assessing, and disseminating curriculum. One particular SoTL component highlighted in this webinar is the role literature searches play in both shaping and refining questions as well as providing the background context required for publication. Resources for undertaking a SoTL investigation are made available to all participants.

The webinar will be held Thursday, May 5 from 12-1 pm (Eastern).

It will be hosted by:

  • Dr. Jackie Dewar (Professor Emerita of Mathematics, Loyola Marymount University)
  • Dr. Matthew Siniawski (Associate Professor of Mechanical Engineering, Loyola Marymount University)
  • Dr. Rikki Wagstrom (Associate Professor of Mathematics, Metropolitan State University)
Participants new to SoTL may want to view “Inquiring Into Our Students’ Learning – The Scholarship of Teaching & Learning” by Dr. Matthew A. Fisher of Saint Vincent University before the May 5th webinar. This recording provides helpful background on SoTL, and will be referenced by Jackie, Matt, and Rikki during their webinar.


Photo Credit: Jenn and Tony Bot (CC BY-NC 2.0)

Engaging Mathematics Co-PI Hosts Webinar on A Future Shared with Robots

Should insurance companies be allowed to use your purchasing history to set prices on your policies? Should self-driving cars be allowed on public roads? What are the implications of robotic police?

These are some of the questions Frank Wattenberg explores during his webinar, Robotics and Artificial Intelligence – Shaping a Future Shared with Robots. Frank is a professor in the Department of Mathematical Sciences at the United States Military Academy (USMA) and a Co-Principal Investigator of NCSCE’s Engaging Mathematics initiative.

USMA uses robotics and artificial intelligence as interdisciplinary topics that cut across the curriculum, helping to unify the academic experience. The topics provide a great context for discussing a wide range of interrelated areas. For example, an assignment on self-driving cars raises questions in economics (Who is liable for accidents?), ethics (What would happen to cab drivers?), and logistics (Should cars driven by humans and self-driving cars be allowed on the same roads?).

Students need to have what Frank calls “intellectual integrity” to successfully program a robotic vehicle to pull into a garage and park itself, without crashing into the garage wall. The kits he uses with his cadets cost about $300 and give students experience with hands-on building and coding. It isn’t enough to get a problem 80% right. If the final product is going to be used in the real world, it needs to work; requiring rigor, tenacity, and attention to detail to perfect the design.

As part of his webinar, Frank led Yuxi Chen, who helped with filming and webinar production, as she built her own self-driving and self-parking robotic car. She used her hand to imitate the garage wall. An ultrasonic range finder mounted at the front of her car sensed the presence of her hand with sound waves, telling the car to stop before a collision.

Designing self-driving cars is a good starting point for cadets because its use in the real world is clear, and because it covers core content, such as linear functions. Another assignment Frank does with his students relates to sentries, or soldiers who stand guard, controlling access to a place. He describes the sentry job as both boring and dangerous–a bad combination for a human, but a perfect task for a robot.

The two big worries with robotic sentries are false positives (taking unnecessary defensive action) and false negatives (failing to take defensive action when there is a real threat). In his webinar, Frank discusses this in the context of a parking garage whose access is managed by a robotic arm. His students graph different scenarios, showing possible behavior patterns of approaching cars that are authorized or unauthorized to access the garage. Students also discuss the varying cost levels of defensive action. Blowing up an unauthorized car before it drives through the gate would be an extreme measure with high cost, whereas raising tire shredders or sounding alarms and flashing lights would be lower cost. This concept of cost, Frank mentions, is analogous to other situations, such as medicine. Different health interventions come at different costs than others.

For more on how Frank uses robotics and artificial intelligence with his USMA cadets, view his webinar.

Frank and his colleague Matthew Mogensen, an instructor of mathematics at USMA, also explored these topics with participants at the 2015 SENCER Summer Institute through a hands-on robotics workshop and panel discussion on the civic implications of robotics and artificial intelligence. Frank ( and Matt ( invite you to email them with questions about using robotics and artificial intelligence in the classroom, or to continue the discussion further.

Photo credit: Jenn and Tony Bot (CC BY-NC 2.0)