Mathematics of Voting Examined in New Engaging Mathematics Teaching Manual

Mathematics of Voting Examined in New Engaging Mathematics Teaching Manual

Dr. John C. Nardo, Engaging Mathematics Institutional Partner and Professor of Mathematics at Oglethorpe University, published a new teaching manual that examines the theory and mathematics behind different voting systems and explores their history and fairness. The curriculum contained in the manual covers interdisciplinary topics in science, history, and writing, and provides exercises, homework problems, sample exams, and context for the mathematics of voting theory.

The teaching manual is available for download in ebook, PDF, and Microsoft Word format. Instructor solutions manuals are available upon request. Engaging Mathematics has published manuals that help teachers incorporate civic issues such as sustainability, climate change, and water pollution into statistics, algebra, modeling, and other mathematics courses. View all Engaging Mathematics teaching manuals.

Engaging Mathematics Presents Invited Poster at Largest Math Meeting in the World

In early January Engaging Mathematics partners flew to San Antonio to discuss their work at the 2015 Joint Mathematics Meetings (JMM). The Engaging Mathematics initiative was invited to the JMM to contribute a poster for projects supported by the National Science Foundation’s Division of Undergraduate Education.

Initiative partners also presented individual work. Dr. Rikki Wagstrom (associate professor of mathematics at Metropolitan State University, SENCER Leadership Fellow) and her math education student Jodin Morey gave talks on curricula they developed for Engaging Math. Rikki’s curriculum focuses on the Midwest’s declining milkweed populations and the potential impacts for monarch butterflies. Jodin’s compares greenhouse gas emissions from automobile fuels.

Dr. Lynn Gieger (associate professor of mathematics at Oglethorpe University) gave a talk exploring how flipped classrooms impact student attitudes and achievement in a liberal arts mathematics course.

The Joint Mathematics Meetings, the “largest mathematics meeting in the world”, is co-presented by the American Mathematical Society and the Mathematical Association of America. To learn more about the JMM, click here. To see the Engaging Mathematics poster exhibited at the meeting, click here. Follow the initiative on Twitter at @MathEngaging.

Oglethorpe University’s Carillon Magazine Features Engaging Mathematics

Carillon Magazine, published by Oglethorpe University, featured an article by Debbie Aiken called “TEACHING BACKWARDS” in their Spring/Summer 2014 issue. The article describes the Engaging Mathematics project, the SENCER method, and how Dr. John Nardo and Dr. Lynn Gieger, Engaging Math partners and Oglethorpe professors, will work to enhance Great Ideas of Modern Mathematics, a core course that every Oglethorpe student takes, for the grant.

To learn more about how “teaching backwards,” a phrase coined by Dr. Gieger, helps students engage with and learn math, please read the article below:

Download (PDF, 1.1MB)

Thanks to Debbie Aiken and Oglethorpe University for the wonderful write-up. You can follow Debbie on Twitter at @superduperdeb, and Oglethorpe at @OglethorpeUniv.

Modern Mathematics: Oglethorpe University’s Great Idea

Game, graph, knot, number, and set theory—probability, finance, topology, infinity, and logic: these are a few major mathematical developments that have emerged since the time of Sir Isaac Newton.

Oglethorpe University’s Great Ideas of Modern Mathematics (GIMM) course offers students the chance to delve deeply into three of these recent developments, a chance most English, business, or anthropology majors never get during their undergraduate careers, a chance typically reserved for those majoring in math and science. GIMM, however, is a general education requirement at Oglethorpe, meaning the entire student population, with the exception of those enrolled in the University’s Evening Degree Program, completes the course before graduating. Consequently, the names of approximately 25% of Oglethorpe’s students fill GIMM rosters each year.

GIMM may be well established, but it is anything but rigid or formulaic. In fact, flexibility and experimentation are central to the course’s structure. While every iteration of GIMM covers topics in both probability and formal logic, the third topic is left to the instructor’s discretion.

For NCSCE’s Engaging Mathematics initiative, Oglethorpe’s Professors Lynn Gieger and John Nardo plan to align both GIMM’s existing probability module, and other modules yet to be created, with the SENCER Ideals. A key component of the SENCER Ideals involves using civically important topics as frameworks for instruction. Because, as Gieger notes, GIMM is very popular among health science majors, some of these new modules may explore the efficacy of mammograms, pregnancy tests, and drug tests.

Gieger and Nardo also plan to collect survey data from this Spring semester’s GIMM students. Surveys will measure whether students believe mathematics can address real-world problems and will gauge which mathematical topics students find interesting. Survey results will then be used to inform module development, which Gieger and Nardo aim to complete during the Fall 2014 semester. In the Spring and Fall 2015 semesters, they plan to field test, analyze, and revise the modules.

The potential for Gieger and Nardo’s modules to engage students, especially students who do not have a natural interest in mathematics, is supported by the recent popularity, or infamy, of a Numberphile video about infinite sums. The video discusses how, by the use of mathematical tricks, the sum of 1 + 2 + 3 + 4 and on to infinity could equal negative one-twelfth—a problem familiar to mathematicians and physicists before the video’s release, but certainly not to the general public, as evidenced by the video’s comment section. Over 1,800,000 people have viewed the video since its January 9th debut—it even caught the attention of the New York Times—making the case that, if only people knew about the sorts of topics modern mathematics explores, which are many of the same topics covered in GIMM, interest in the subject would, effectively, go viral. Applying SENCER ideals to modules stands only to augment GIMM’s already substantial potential to engage its students.

Though Gieger and Nardo recognize that a course like GIMM may well be unique to Oglethorpe, they believe that their modules will be transferable to at least one course at most institutions. Normandale Community College’s Mathematics for Liberal Arts, which is also being enhanced as part of the Engaging Mathematics initiative, could be one such course. As its title indicates, Mathematics for Liberal Arts is designed for students pursuing liberal arts degrees. Ideally, by the end of the course, after they have studied how mathematics pertains to the local environment and other topics of interest, these non-math majors will have gained an appreciation for the mathematics that surrounds them, hidden in plain sight. Gieger and Nardo hypothesize that modules developed for GIMM could, with minor adaptations and alterations, successfully be incorporated into Normandale’s course.

Increasing non-math majors’ appreciation for the subject is also a main goal of incorporating issues of civic importance into GIMM’s modules. As Gieger explains:

For many of our students, this is their only exposure to mathematics at the college level, and those students in particular tend to be very skeptical about the practical value of mathematical study. Framing modules in this course through the SENCER structure has a great potential to help these students see why mathematics is both beautiful AND useful.

And is not that the best anyone could hope for, being seen as both beautiful and useful? For updates about the status of Gieger and Nardo’s modules, as well as for information on the rest of our faculty’s progress, follow us on Twitter @MathEngaging.

Article originally published by Christine Marie DeCarlo on March, 13 2014.

Bucki Facilitating

Engaging Mathematics Partners Launch New Initiative

This past weekend, January 24-25, nineteen members of the Engaging Mathematics leadership team, including the partners, advisory board representatives, consultants, and Co-PIs, met in Jersey City, New Jersey to formally begin work on how to “make mathematics relevant to students’ lives, to connect mathematics learning to the goals and interests that students bring to college, and to show how mathematics relates to other disciplines, important civic questions, and technological challenges.”

On the first day of the meeting, the partners from the lead institutions shared and discussed details about the math curricula they had developed, including their intended audiences, the civic topics covered, and the expected rollout of each course or module. Attendees discussed strategies to expand the community of practice by reaching out to peers through academic meetings and conferences. An action planning workshop led by facilitator Jonathan Bucki helped stakeholders to specifically plot activities over the three years of the grant.

Attendees were joined by cadets from the United States Military Academy who shared their experiences with math courses that include civic issues. The cadets also demonstrated mathematical modeling on topics such as power battery loadouts for US soldiers, and the relationships between their costs and weights. Dr. Rikki Wagstrom of Metropolitan State University discussed how she incorporated the Scholarship of Teaching and Learning (SoTL) into her “Mathematics of Sustainability” course.

The second day of the meeting focused on assessment and evaluation. The independent evaluator for Engaging Mathematics, Leo Gafney, discussed his plans and methods for evaluating the project outcomes. Later, Stephen Carroll of Santa Clara University discussed guidelines and best practices for the Student Assessment of Learning Gains (SALG), which will be used to evaluate student progress in the courses.

“It was wonderful to see the enthusiasm of the project’s faculty members from different institutions as they worked together on planning and as they shared their ideas about teaching mathematics through a variety of civic issues, including environmental sustainability, energy consumption, water resources, and other topics related to local, regional or national needs. I am optimistic that the work the ‘Engaging Mathematics’ faculty are doing will be shared and serve as models (whether full courses or modules that can be used in a course) for the wider SENCER and national mathematics communities,” said Ellen Mappen, an NCSCE consultant with the project.

Following the meeting, Dr. Lynn Gieger of Oglethorpe University, a partner in Engaging Mathematics, shared that, “I came away from the weekend with a much better sense of the larger project as well as our particular role in it.” Dr. Chris Arney, professor of math and Chair of Network Science for the United States Military Academy and member of the advisory board, noted, “I do believe I was re-SENCERized.”

A page focusing on Engaging Mathematics activities and resources is now live here. Over the course of the project, a separate website will be developed and linked to this page. Visitors will be able to peruse the types of courses planned to be enhanced or developed, and additional features will be added to the site to allow project partners to share details on their course development, and once available, the results of course implementations. To learn more about the Engaging Mathematics initiative, please click here.

Article originally published by Kyle Simmons and Christine Marie DeCarlo on January 30, 2014.

Engaging Mathematics Hosts Planning Meeting in New Jersey

As previously announced in the eNews (here), the National Science Foundation recently funded the project Engaging Mathematics, “a strategy and program to make mathematics relevant to students’ lives, to connect mathematics learning to the goals and interests that students bring to college, and to show how mathematics relates to other disciplines, important civic questions, and technological challenges.” On January 24th and 25th, the National Center for Science and Civic Engagement will host the kick-off meeting in Jersey City, NJ.

Engaging Mathematics project leadership includes Wm. David Burns, Principal Investigator, and Co-Principal Investigators Cindy Kaus of Metropolitan State University, Mangala Kothari of LaGuardia Community College, and Frank Wattenberg of the United States Military Academy. Project partners, who will develop the curricula and materials, include Tony Dunlop and Victor Padron of Normandale Community College, Cathy Evins and Barbara Gonzalez of Roosevelt University, Lynn Gieger and John Nardo of Oglethorpe University, Rikki Wagstrom of Metropolitan State University, and John Zobitz of Augsburg College.

During next week’s meeting, 19 of the project’s stakeholders will examine the curricula developed by the partners, discuss the expansion of the community of practice, and more closely plot the trajectory of the project going forward. Jonathan Bucki will facilitate planning discussions. Additional consultation will be provided by Dr. Leo Gafney (the project’s external evaluator), and Eliza Reilly and Ellen Mappen (of the National Center). Advisory board members who will contribute expertise for Engaging Mathematics include David Arney of the US Military Academy, Prabha Betne of LaGuardia Community College, Victor Donnay of Bryn Mawr College, David Ferguson of Stony Brook University, and Susan Forman of Bronx Community College. A summary of the meeting will be featured in a forthcoming edition of the NCSCE eNews.

Article originally published by Kyle Simmons on January 15, 2014.

Engaging Mathematics to Expand SENCER Applications in Mathematics Education

Engaging Mathematics: Building a National Community of Practice is the name for a new three-year initiative supported by the National Science Foundation though its TUES-II program.

Engaging Mathematics (EM) will be organized by faculty colleagues who have successfully incorporated the SENCER ideals and other progressive pedagogies into college-level mathematics education. Over the next three years, the partners will work together to develop, assess and refine courses and modules, sharing them within the community of practice. As the project matures, EM partners will disseminate the results of their labors to the larger higher education community through a variety of media. While EM partners will routinely communicate with the SENCER community and participate in SENCER’s faculty development programs, they will also reach out to—and through—disciplinary societies and others new to SENCER.

In three years, the EM project intends to produce and publish transferable models, offer webinars, and organize local, regional, and national faculty development opportunities. The overall goal is to nurture and support a vibrant community of practice open to those committed to improving mathematics learning by connecting that learning to the great civic challenges of our day.

“Though this wasn’t so in the early years of SENCER, we now have a strong corps of leaders, along with terrific models and other curricular assets, in mathematics,” noted David Burns, NCSCE’s executive director and the PI of the new NSF award. “This grant from NSF will enable a team of scholars who have created many of these assets to work intensively with one another to expand their efforts, connect to new communities, and introduce successful approaches to colleagues around the country.”

“As with all our Center’s initiatives, our goal is to improve learning and strengthen the capacity for responsible civic engagement, ” Burns added. “We are blessed with a terrific team of co-PI’s and campus collaborators who will work to achieve the ambitious goals we set for this project. This is especially important work in the context of our nation’s need to improve our capacity to use mathematics to describe, model, analyze, and make reliable predictions about some of the most vexing problems we face. How to best understand and make decisions about a welter of personal and practical problems that are presented and argued in mathematical or statistical terms is one more challenge we hope to help our students meet.”

Burns, who will serve as principal investigator of Engaging Mathematics, will be joined by a team of co-principal investigators including: Dr. Cindy Kaus of Metropolitan State University, Dr. Mangala Kothari of LaGuardia Community College, and Dr. Frank Wattenberg of the United States Military Academy.

Engaging Mathematics institutional partners include Dr. John Zobitz of Augsburg College, Dr. Victor Padron and Dr. Tony Dunlop of Normandale Community College, Dr. John Nardo and Dr. Lynn Gieger of Oglethorpe University, and Dr. Barbara Gonzalez and Dr. Cathy Evins of Roosevelt University. Dr. Leo Gafney will provide guidance and overall evaluation of Engaging Mathematics activities.

During the term of the project, partners at LaGuardia Community College plan to expand on the successful Project Quantum Leap course Elementary Statistics with Environmental and Social Issues. Metropolitan State University participants will create modules for calculus courses centered on the topic of sustainability. In addition to these newly developed courses, LaGCC and Metro State will also disseminate successful SENCER applications on their campuses to the other Engaging Mathematics partners, and to faculty and administrators locally and nationally.

Augsburg’s focus will be on a project-based calculus endeavor, while Oglethorpe University will create new models for the general education courses required of all students. Roosevelt University partners plan to integrate the SENCER approach into a college algebra course using issues affecting the city of Chicago. Normandale Community College plans to focus on water issues in a general education course, specifically enabling students to create linear and regression models. They also plan to introduce calculus-based group projects into another course.

An overall project goal is to have the newly developed course and modules taught at both the institution where the course was originally developed and at a partner campus. In the end, all the institutional partners will thus have the benefits of several new courses and the PIs and project team will have a better understanding of what is needed to make courses succeed in multiple settings.

Professor Frank Wattenberg of the United States Military Academy will provide guidance and forge connections with other national mathematics innovation initiatives. He will be responsible for connecting our reform efforts to already successful and complementary projects, so that the full advantage of what has been developed and learned by others is available to the EM partners and the SENCER community.

Distinguished educators who will advise Engaging Mathematics partners as they execute activities over the next several years include David C. Arney of the United States Military Academy, Samuel Benigni of Harrisburg University of Science and Technology, Prabha Betne of LaGuardia Community College, Victor Donnay of Bryn Mawr College, David Ferguson of Stony Brook University, Susan Forman of CUNY Bronx Community College, and Solomon Garfunkel of COMAP. Additionally, NCSCE senior scholars Ellen Mappen and Eliza Reilly will assist project partners with consultation on planning and dissemination and in transforming their successful courses and modules into SENCER national models.

At its invitation, the Engaging Mathematics leadership team will work with the Mathematical Association of America to disseminate materials, modules/courses, and results to their communities of interest. Additionally, Engaging Mathematics will offer a website where updates and resources developed throughout the initiative will be made available to all interested educators, administrators, and students. Regional meetings, national symposia presentations, and faculty development programs are planned.

Look for reports on the work of the Engaging Mathematics partnerships, along with information on how you and your institution might benefit from the EM project in future editions of the eNews.

Article originally published September 19, 2013.